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Hippocampal CA1 neurons are known for the location specificity of 
their action potential firing during free foraging within an arena1. Such 
location-specific firing is modulated by constraints governing running 
behavior and available trajectories2–5. In this way, CA1 can and does 
encode multiple navigationally relevant spatial relationships.

As an efferent target of CA1, the dorsal subiculum may be primed 
to encode more complex spatial relationships6,7. Subiculum neurons 
sometimes exhibit place-specific firing akin to that of CA1 (refs. 8,9), 
yet reported differences include increased generalization of place 
fields across environments, scaling of firing fields to match arena 
size, and increased numbers and sizes of fields9–11. Some subiculum 
neurons, termed boundary vector cells (BVCs), exhibit spatial tuning 
reflecting proximity and orientation to arena borders12,13.

Multiple-pathway environments greatly increase the prevalence of 
task-relevant spatial relationships, but whether subiculum encodes 
such spatial features is unknown. We therefore obtained single- 
neuron recordings in rats performing a navigational task (Fig. 1a and 
Supplementary Figs. 1 and 2) wherein the layout of six intercon-
nected routes ensured that each track section had a characteristic 
direction and axis of travel (Fig. 1b).

Immediately apparent from firing rate maps and directional tuning 
plots is a distinctive neuron subpopulation firing strongly whenever the 
animal ran in either of two opposing directions (Fig. 1c). Such firing was 
largely independent of room location. Put another way, such neurons 
fire when the animal travels in either direction along a single axis.

Since neurons with axis-tuned activity were not reported in work 
using open-field foraging tasks8,13,14, we considered the possibility 
that axis-specific firing emerges during route running. Therefore, 
we also examined spiking activity during free foraging in an arena 
centered just atop the track environment with clear view of the same 
distal landmarks (Fig. 1a). Neurons with axis tuning on the track 
exhibited little evidence of axis-tuned firing in the arena (Fig. 1c). As 
previously observed8,9,13,14, some subiculum cells exhibited spatially 

specific firing (Supplementary Figs. 3 and 4) akin to that of place 
cells in CA1 (~29%) and BVCs in subiculum (~21%).

To assess the prevalence of subiculum axis-tuned neurons, quantifi-
cation of their characteristics is required. Such neurons should exhibit 
bimodal directional tuning peaks separated by 180°, and firing should 
be independent of environmental location (Fig. 2a). Therefore, we fitted 
von Mises mixture models of multiple orders to each neuron’s firing data 
from half the recorded track traversals (Supplementary Fig. 5 and Online 
Methods). Comparison of fits across multiple model orders allowed 
objective estimation of the prominent modes in the neural data. Cross-
validation was applied to the remaining half of the data. The lowest- 
order model with a strong fit (>50% less error than a 0th-order circular 
model) and substantial improvement over the preceding model order  
(a further 20% error reduction) was chosen as the ‘best’ model. A higher 
proportion of subiculum neurons were categorized as bimodal (that is, 
second-order) than any other model order (Supplementary Fig. 6)  
across a wide range of model improvement criteria (10–22.5%). This 
bimodality bias existed in track-running but not arena free-foraging data. 
For neurons fit by a second-order model, thresholding for twice the firing 
at model maxima relative to minima removed weakly tuned neurons.

We also assessed the positional independence of bidirectional fir-
ing to quantify reliability in axis-tuned firing. Over track locations 
associated with either of the neuron’s preferred tuning directions, we 
determined whether firing rate exceeded at least 50% of the mean rate 
for those same directions. Neurons were considered spatially inde-
pendent if the majority of locations met this criterion.

The 47 neurons (of 542 tested) meeting these criteria were strongly 
tuned to a specific axis of travel on the track. Orientation separations 
between each neuron’s two peaks overwhelmingly clustered near 180° 
(Fig. 2b). Tuning specificity was high, having a mean circular variance 
of 0.27 radians (± 0.08, s.d.). Firing rates at model-identified tuning 
peaks were, on average, 4.65 times those at tuning minima (± 2.23, 
s.d., outlier value of 90.4 removed; Fig. 2c). Thus, the actual strength 
in bimodal tuning was well above the applied criterion of a two-fold 
difference in firing. Mean spatial independence of axis-tuned firing 
was also well above criterion (73.9% ± 12.5, s.d.). Across this subpopu-
lation, the preferred tuning directions of firing were evenly distributed 
(Hodges-Ajne uniformity test, N = 94, P = 0.9182; Fig. 2d).

Applying the same methodology and criteria, no neurons with 
strong axis-tuned firing were found in arena recordings (Fig. 2e,f 
and Supplementary Figs. 6 and 7). For a few neurons (N = 8), a first-
order model identified a more moderate bias to a single direction 
both on the track and in the arena. For the 47 neurons identified as 
axis-tuned on the track, model maxima to minima ratios for the arena 
session were significantly lower (N = 47, P = 1.79 × 10−11, Wilcoxon 
rank sum test) and circular variance in peak tuning was significantly 
higher (N = 94, P = 2.35 × 10−18, Wilcoxon rank sum test). Spatial 
independence was unchanged (N = 94, P = 0.07, Wilcoxon rank sum 
test), consistent with axis-tuned firing on the track and the broad 
spatial tuning typical of subiculum arena data8.
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The preceding results indicate that the context of track-running 
and/or the constraints on available trajectories are critical in gener-
ating axis-tuned firing of subiculum neurons. As the track allowed 
clear view of distal visual cues along recording room walls, axis-tuned 
neurons could, in principle, anchor to either the recording room or 
the track structure. To determine which frame of reference served to 
anchor axis-tuned firing, a partially overlapping subset of neurons 
(N = 170) was also recorded following 90° track rotations (Fig. 3a). 
In all cases (N = 26), axis tuning was found to be anchored to the 
spatial frame of reference given by the recording room. Highly similar 
directional tuning plots were observed for the standard and rotated 
conditions in plots aligned to the room frame of reference (Fig. 3b). 
In this case, correlations between tuning curves for the two track 
configurations were high (mean 0.76 ± 0.16, s.d.). When the rotated 
track session’s tuning curve was rotated to maintain the relationship to 
the track, mean correlations were far weaker (mean −0.41 ± 0.22, s.d.;  
N = 26, P = 6.55 × 10−10, Wilcoxon rank sum test; Fig. 3c).

Taken together, the present analyses of directional and spatial tun-
ing properties of subiculum neurons reveal a previously unknown 
form of orientation encoding, the animal’s axis of travel. Axis-tuned 
firing of subiculum neurons is recognized and quantified from direc-
tional tuning plots characterized by two distinct peaks in firing rate, 
separated by approximately 180°. Such axis-tuned firing: (i) can 
exhibit near complete independence from environmental location; 
(ii) is expressed primarily in the context of route-running along tracks 
as opposed to unconstrained movement in an open arena; and (iii) 
carries the environmental boundaries (allocentric space) as its spa-
tial frame of reference. In addition, axis tuning persisted in darkness 
(Supplementary Fig. 8) suggesting that it is not strictly dependent 
on visual information and can be updated idiothetically. Subiculum 
axis-tuned neurons are clearly distinguishable from head direction 
neurons15, whose activity maps only a single orientation and whose 

tuning is present during foraging in open arenas. Axis tuning is also 
distinguishable from boundary vector tuning because only a minority 
(7, or 14.9%) of the 47 axis-tuned neurons exhibited firing in the arena 
consistent with boundary vector encoding (Supplementary Fig. 4).

The context dependency of axis-tuned subiculum activity paral-
lels that of several other forms of spatial representation. For hip-
pocampal neurons, route running induces directional dependence 
in place-specific firing2,3 and the emergence of trajectory-specific 
place fields4,5. The presence of high walls defining a ‘switchback’ path 
yields resetting of medial entorhinal cortex grid cell alignment across 
repeating route subspaces16. Finally, the action correlates of most pos-
terior parietal cortex neurons in free foraging are replaced by route- 
position-dependent firing on tracks17,18. Thus, route running induces 
qualitative changes in spatial mapping in several brain structures and 
such changes yield conjunctive information concerning relationships 
between paths and the space of the larger environment. The neural 
mechanism gating the influence of movement directions in track-
based versus arena environments remains a mystery.

The expression of axis-tuned subiculum activity in an environment 
having multiple interconnected paths is perhaps an initial clue to its 
functional significance. Axis-tuned activity encodes the track segment 
orientations relative to environmental boundaries. In humans, such 
route–boundary relationships can powerfully affect memory for the 
spatial layout of environmental landmarks19. In this sense, encoding of 
axis of travel could be particularly relevant in real-world environments 
where boundaries can be difficult to define. For example, a commonly 
used orientation tool in human navigation is to align oneself to a city’s 
street grid based on a prominent, well-known, linear landmark such 
as a coastline, river or well-recognized street. In this respect, layering 
representation of movement axes atop the cognitive map provided by 
place and grid cells enhances its behavioral relevancy and therefore 
yields a more functionally complete mapping of space.
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Figure 1 Axis-tuned firing of subiculum neurons. (a) Schematic of route-running and open-field foraging tasks. Left: animals made multiple runs along 
each of four partially overlapping routes (dashed white lines) on the 160 cm × 125 cm track apparatus, leading from a start site (green circle) to any of 
four goal sites (red circles). From each goal site, the animal returned to the start via either of two return paths (dashed yellow lines). Right: recordings 
were also obtained as animals foraged in a circular, 60-cm-diameter arena. Animals had clear view of the surrounding environment at all times. (b) Left: 
color-mapped mean directions of travel superimposed on representative tracking data. Right: color-mapped mean axes of travel (same recording).  
(c) Three example axis-tuned subiculum neurons. Each panel depicts firing rate color-mapped as a function of track position. White arrows mark 
directions and positions with highest firing. Each panel also depicts firing rate maps for the arena foraging session. Polar plots depict mean firing rate 
against head orientation. NS14, NS15 and NS16 designate the individual rats.
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METhods
Methods, including statements of data availability and any associated 
accession codes and references, are available in the online version of 
the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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Figure 2 Quantification of axis-tuned firing. (a) The same directional 
tuning plot as for the neuron in Figure 1c (left) is depicted again to 
describe axis-tuning metrics. A mixture model using two von Mises 
distributions (red ellipses) provided a good fit to the neuron’s directional 
tuning plot. The model yields two tuning maxima at 100° and 260° from 
room north (dashed yellow lines; circular variances shown as yellow lines 
at the margin). Robustness and bias in tuning are given by maximum:
minimum and maximum:maximum ratios, respectively. (b) For all 47  
axis-tuned neurons, the directional tuning plots were aligned to the  
larger model peak of each neuron (black line). Blue lines depict the 
relative orientations of these neurons’ opposite, smaller tuning peaks. 
Gold lines depict the second-peak orientations for Figure 1c neurons.  
(c) Mean of the maximum-normalized (normed) directional tuning plots  
for the 47 strongly axis-tuned neurons (plots aligned by the highest firing 
rate bin). (d) Orientations of all primary and secondary peaks relative to 
the space of the surrounding environment (Fig. 1c neurons in gold).  
(e) Cross-hatched bars depict the number of subiculum neurons (of 542) 
for which the second-order von Mises mixture model produced the best 
fits. Dark blue and light blue bars depict the number of neurons that also 
met criteria for ratio of directional tuning maxima versus minima and 
spatial independence (N = 0 neurons for the arena session). (f) Box plots 
of axis-tuned neuron population statistics (red bar, median; box limits 
mark first and third quartiles; whiskers extend to range of non-outlier data 
points). Peak-to-minimum ratios for axis-tuned neurons were significantly 
higher (left) for the track versus the arena recording epochs, whereas 
circular variance was lower (middle). Spatial independence (ind) of 
directional tuning was statistically similar (right). *P < 10−10.
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Figure 3 Spatial frame of reference for axis tuning. (a) The original (left 
panel) and rotated (right panel) track placements. (b) Color-mapped firing 
rates for axis-tuned neurons in the normal and rotated track configurations 
alongside the associated directional tuning plots. The neuron in the 
right panel is repeated from Figure 1c (upper left panel). Because 
tuning orientations persist, track positions yielding maximal firing differ 
substantially for the normal and rotated track orientations. (c) Comparison 
of orientation tuning across track orientations. Top left: alignments of tuning 
peaks during the rotated track session (blue lines, N = 26) relative to those 
for the same neurons during the normal track orientation session (the latter 
are all aligned to 90°). Bottom left: correlations between all directional 
firing rate values for the normal (blue) versus rotated (red) track conditions 
were compared to correlations between the same following 90° rotation 
of the values for the rotated track data (dotted red). Right: mean (N = 26) 
correlations between directional firing rate values for the normal and rotated 
track conditions (dark blue) and for the normal and rotated track conditions 
after 90° rotation of the rotated track data (matching track rotation in light 
blue; red bar, median; box limits mark first and third quartiles; whiskers 
extend to range of non-outlier data points). *P = 6.55 × 10−10.
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Subjects. All subjects were adult male Sprague-Dawley rats (N = 3). From these 
rats, a total of 542 subiculum neurons were recorded (81, 321 and 140 from each; 
see Supplementary Fig. 1). Rats were housed individually and kept on a 12-h 
light/dark cycle. Prior to experimentation, animals were habituated to the colony 
room and handled for 1–2 weeks. During training and experimentation, rats were 
food restricted and weights were maintained at 85–95% of free-fed weight with 
water available continuously. Rats were required to reach a minimum weight of 
350 g (5–10 months of age) before surgery and subsequent experimentation. All 
experimental protocols adhered to AALAC guidelines and were approved by the 
IACUC and the UCSD Animal Care Program.

Statistical tests. The Hodges-Ajne Uniformity test is employed to consider poten-
tial bias in the distribution of directional tuning among the full population of 
neurons (Fig. 2d). The Wilcoxon rank sum test is employed to compare metrics 
for directional tuning of neural activity in the track-running versus arena forag-
ing sessions (Fig. 2f); this test carries no assumption of normality in distribution 
of the data.

No statistical methods were used to predetermine sample sizes, but our sam-
ple sizes are similar to those reported in previous publications17.

Data collection was not randomized, nor was analysis performed blind to the 
conditions of the experiment.

We here report exclusion of one value in calculating the mean for maxima to 
minima ratios across cells. Although no prior criterion was defined, the value 
is fully 19 times the mean and so clearly an outlier. Notably, this outlier was in 
the direction favoring a finding of significance in the statistical test applied and 
so its exclusion reflects a more conservative approach.

A Supplementary methods checklist is available.

Apparatus. Behavioral tasks were conducted using both a circular wall-less arena 
and a triple ‘T’ track maze. The track (Fig. 1a, left panel; 8-cm-wide pathways, 
overall 1.6 m × 1.25 m in length and width, painted black) stood 20 cm high in 
the middle of a large recording room and was visually open to prominent distal 
cues. The track edges were only 2 cm in height, allowing an unobstructed view of 
the environment. The arena (Fig. 1a, right panel, 60 cm in diameter) was placed 
20 cm above the center of the track. The arena was also visually open to the same 
prominent distal cues as well as the track below. For the first recording of rat 
NS14 (N = 17 neurons), a high-walled pot (30 cm in diameter, 22 cm walls) was 
used in place of the arena.

Behavior. Rats were habituated to the maze during two 30-min periods of free 
exploration. Animals were then trained to run ballistically from the midpoint of 
one of the long edges of the maze into the center of the apparatus and continue 
until reaching the long edge opposite the start point (Fig. 1a, white dashed lines). 
This consisted of straight sections interleaved with three left or right turns for a 
complete path run. The total path lengths were 140 cm, with turns at 51 cm, 87 
cm and 118 cm. Reward (a half piece of Cheerios cereal) was made available at 
the four reward sites. Over 1–2 weeks, animals were trained by approximation 
to make route traversals between food reward sites. Over at least 2 additional 
weeks, animals were trained by simple trial and error to a criterion of 80% for 
ballistic (uninterrupted) path traversal. Once animals met criterion, they were 
trained two or three times on the track in the normal orientation, immediately 
followed by training on the track in the 90° rotated orientation. This established 
familiarity with the rotated track, but the rats were not extensively trained in 
this orientation. Animals were surgically implanted only after this level of task 
performance had been achieved.

Multiple reward tasks were used across the set of animals. In an all-but-repeats 
task, used for animal NS14, the animal was rewarded at any of the four locations 
except when the animal repeated the same location as the previous run. In a 
visit-all task used for NS15 and NS16, the animal was rewarded at all locations, 
but needed to visit all locations before rewards were reset at all paths.

In the arena, two different behavioral epochs were used, each for approxi-
mately half of the time in the arena (~5 min each epoch). For the first half of 
the time, the animal was cued to make trajectories across the full arena for a 1/4 
Cheerio’s cereal reward at the track edge. The trajectory orientation was varied 
in order to obtain adequate sampling of the full arena surface. This pattern 
produced running activity similar to that on the track apparatus. The second 

half of each arena session was free foraging for small pieces of Cheerios reward 
dispersed randomly in the arena. Data were analyzed together in all portions of 
the paper to maximize sampling.

Surgery. Rats were surgically implanted with tetrode arrays (twisted sets of 
four 12.5-µm nichrome wires) inserted into custom-built microdrives (four to 
eight tetrodes per microdrive). Rats were implanted bilaterally with two or three 
microdrives into dorsal subiculum. Rats were anesthetized with isoflurane and 
positioned in a stereotaxic device (Kopf Instruments). Following craniotomy and 
resection of dura mater, microdrives were implanted relative to bregma (A/P −5.6 
to −6.6 mm, M/L ±1.6 to ±2.7 mm, D/V −1.5 to −2.2 mm).

Recordings. After recovery from surgery, animals were retrained for at least  
1 week before beginning recordings to ensure adequate behavior and running 
ability with the new weight of the implant. Because of this procedure, all record-
ings were from animals that were well trained on the task. Electrodes were moved 
ventrally in 40-µm increments between recordings to maximize the number of 
distinct units collected. Each microdrive had one or two electrical interface 
boards (EIB-16, Neuralynx) connected to a single amplifying headstage (20×, 
Triangle Biosystems). A tether led to a set of preamplifiers (50×) and a high pass 
filter (>150 Hz). Signals then fed into the acquisition computer running Plexon 
SortClient software and were filtered at 0.45–9 kHz, further amplified 1–15× 
(to reach a total of 1,000–15,000×), and digitized at 40 kHz. Single units were 
isolated in Plexon OfflineSorter software. Waveform parameters used were peak 
height, peak valley, energy, full width at half maximum, and principal compo-
nents. Waveform clusters appearing to overlap with the amplitude threshold set 
for collection were discarded to avoid collection of neurons with partial spiking 
data. Waveform amplitudes were monitored to ensure systematic fluctuation did 
not produce confounds in isolating single units.

After completing unit isolation, a modified isolation distance value was calcu-
lated for each unit to assess cluster quality. Introduced by Harris et al.20, isolation 
distance measures the separation of clusters by finding the Mahalanobis distance, 
reported in units of cluster variance, of the nth closest noncluster spike, where n 
is the number of spikes in the cluster. Put another way, isolation is the size from 
the center of the cluster to the circle that includes double the number of spikes 
as actually classified in the cluster. Accordingly, this measure is undefined when 
the number of the spikes in the cluster exceeds the number of spikes out of the 
cluster, and starts to lose intuitive meaning as a measure of distance to the near-
est cluster as this limit is approached. Because of the propensity of high firing 
subiculum neurons, we have adapted this measure to be the minimum of the 
isolation distance as defined by Harris et al. and the distance to the noncluster 
spike 20% into the noncluster spike distance distribution. This modification to 
isolation distance serves to define the value for all neurons and to reduce the 
isolation distance for clusters with many spikes. While only reducing our neu-
rons’ scores, we believe this conservative adjustment more accurately represents 
cluster quality in these situations.

Animals’ position was tracked using a camera set 2.6 m above the recording 
room floor. Plexon CinePlex Studio software was used to detect red and blue 
LED lights placed on the animal’s surgical implant, centered on the animal’s head 
and separated by approximately 5 cm. Position location of the lights was captured 
at 60 Hz. The animal’s position and orientation was determined by averaging the 
location of the two lights and calculating the orientation of the vector between 
the lights. Using the fact that the track apparatus was squared to the room, we 
averaged the orientation of all time periods with >3 cm/s running and positions 
on the middle half of the return arms of the track. This angle was defined as 0°, 
or ‘room north’, for the recording and was used to align the animal’s heading to 
the room. Recordings lasted approximately 45 min for arena and track record-
ings and 1 h 15 min for recording sessions with track rotation data. The animal 
would run in the arena for 3–10 min and then on the track for approximately 
80 rewarded runs (Fig. 1a). For track rotation recordings, the animal had access 
to water for 5 min after completing the first session while the track was wiped 
down and rotated and then ran for another 80 rewarded runs (Fig. 3a). For 
dark recording, we began by running the animal on the typical arena and track 
sessions. Then the same protocol for a track rotation recording was carried out 
except the track was not rotated and only a red LED was used on the animal’s 
implant. All other light sources in the room were turned off or covered. All other 
recording details were identical to other recordings.
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We recorded a total of 542 subiculum neurons across three rats. For the first 
animal, all 81 neurons were recorded from the right hemisphere. For the second 
animal, 127 neurons were recorded from left subiculum and 194 from right 
subiculum. For the third animal, 42 and 98 neurons, respectively, were obtained 
from medial and lateral tetrode bundles in the right hemisphere. No neurons 
were excluded from analysis, even if activity was minimal.

Histology. Animals were perfused with 4% paraformaldehyde (vol/vol) under 
deep anesthesia. Brains were removed and sliced into 50-µm sections and Nissl-
stained to reveal the final depth of electrode wires in subiculum. Microdrive depth 
monitored across recordings and final electrode depth as observed in histology 
were compatible in all cases.

directional tuning vectors. Head direction tuning vectors were calculated using 
the same sample of running data as the positional firing rate maps (i.e., using 
the same velocity thresholds). Head orientations were binned into 36 10° bins. 
The total number of spikes per bin was divided by the total time in each bin to 
calculate the mean directional firing rate.

orientation maps. Orientation maps (Fig. 1b) were created by calculating the 
mean circular direction21 of all samples at each spatial location.

Positional firing rate maps. To characterize the firing activity of the subiculum 
neurons, we calculated individual neurons’ positional firing rates by dividing the 
total number of spikes of each neuron at each location by the total occupancy time 
at each location. To include only data where the animal was running, we excluded all 
samples with less than 3 cm/s velocity or greater than 20 radians/s angular velocity. 
The latter threshold was used to exclude cases of rapid head turning in the absence 
of locomotion. Positional firing maps were smoothed using a 2D convolution with 
a Gaussian filter with s.d. of 2 cm that also accounts for bins with no occupancy22. 
Raw, unsmoothed data were downsampled to 2 cm × 2 cm bins for analysis of spatial 
independence of directional firing. For Supplementary Figures 3, 4 and 7, data 
were downsampled to 2 cm × 2 cm bins and smoothed using a 2D convolution with 
a Gaussian filter with s.d. of 4 cm and the same occupancy adjustment as above.

Burst index for spiking activity. To assess burstiness in subiculum spiking activity, 
we applied the method outlined and used by Kim et al. (2012)9. We did this for two 
reasons. First, the method developed by Kim et al. is not confounded by firing rate 
differences, a key factor considering the diverse firing rates of subiculum neurons. 
Second, using the same method allowed direct comparisons of our results to previ-
ous findings. The burst index is computed by integrating the spike autocorrelogram 
from 1–6 ms and dividing the result by the integrated power from 1-20 ms. The 
measure allowed us to demonstrate that the basic firing properties of subiculum 
neurons recorded in our work are in line with those observed previously9.

Arena spatial measures. Arena spatial firing was described using three classic 
spatial measures: spatial information23, spatial information per spike23 and spatial 
coherence24. All analyses were implemented as described in the respective sources 
on arena data downsampled to 2 cm × 2 cm bins. Only those neurons with at least 
250 spikes in the arena (N = 354 of 542) were analyzed. Briefly, spatial information 
is the number of bits of information per second the neuron communicates while 
the animal is on the arena. Spatial information per spike is this same value but 
now as a rate of bits per spike of the neuron. This reframing is useful for neural 
populations with low variability in firing rates, but greatly skews values against 
high-firing neurons in more variable populations. For this reason, we primarily 
utilize spatial information in this paper. We do include information per spike for 
the sake of comparison to other work. Finally, spatial coherence is the Pearson 
correlation of all locations on the arena to the mean of their surrounding loca-
tions. Coherence is a measure of smoothness of firing activity across space and is 
high for spatially reliable neurons provided binning is adequately small.

Spatial correlates (BVc and place) model comparison. Both place cell and 
boundary vector cell (BVC) spatial representations have been previously described 
in dorsal subiculum8. To better describe the prevalence and form of strong spatial 
tuning in the open arena, we devised a brute-force template-matching procedure 
that compares the 2D spatial firing rate map of each neuron to a set of all possible 
ideal place and BVC firing maps.

The 2D firing rate map templates for BVCs were formed by following the 
BVC-defining model equations provided in Hartley et al.25. As stated in Hartley 
et al.25, equation 1, the receptive field g(r,θ) of a BVC tuned to a boundary dis-
tance d and a bearing φ from the rat is 
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where r is the distance and θ is the bearing to that boundary. By using Hartley 
et al.’s25 equation 2, the firing rate of a BVC at any Euclidian location f(x,y) is 
calculated by summing the contribution of all boundaries: 

f x y g r
b

b b, ,( )= ( ) ×∑ q q∆

where b is one instance from the set of all boundaries. We calculated the distance and 
orientation to the edge of the arena at 5° increments (∆θ = 5°) for each location and 
used this as our set of boundary distances and orientations. We defined sang

2  = 0.2  
radians to mimic the settings of Hartley et al.25, although it is worth noting any 
reasonably small value gives similar results. Hartley et al.25 define srad

2  as 

s srad =
+
d

β 1 0

so that srad
2  varies linearly with distance. We used β = 10 and σ0 at 4 values, 

σ0 = [0.25, 0.5, 0.75, 1], to allow the model a variety of distance tolerances and 
remain as agnostic as possible about predicted parameter values. The final free 
parameter, d, is the BVC’s preferred distance to the border. Allowing any reason-
able parameter values as was done with σ0, we chose d values from distance 0 
(the edge of the arena) to the arena radius (30 cm) at 4-cm intervals, resulting 
in 9 distances. Finally, creating BVCs by combining all possible orientations (72, 
5° increments), σ0 values (4), and feasible distances (9), we created ~2,500 ideal 
BVC firing rate maps per neuron.

The 2D firing rate map templates for place cells was a similar procedure.  
A 2D Gaussian distribution was used to create templates with centers at each 
2 cm × 2 cm bin location. As in the BVC models, we used 4 s.d. values for each 
location: σ = 5, 7, 9 and 11 cm. This resulted in ~2,800 (πr2 × 4, where r is  
in bins) place cell templates per neuron.

To assess the fit of a neuron to a place cell or BVC model, we ran a Pearson 
correlation on all bins with occupancy and their corresponding values in all BVC 
and place cell templates. We then selected the template with the highest r value 
for each of the BVC and place cell template sets and used this as our estimate 
of the quality of fit of each cell type to our data. We did this for all 354 neurons 
with at least 250 spikes on the arena. As nearly all neurons displayed signifi-
cance as compared to a bootstrap method creating 1,000 shuffles of the same 
neuron’s firing rates before correlating with the templates, we arbitrarily chose a 
higher Pearson r = 0.4 cutoff value to determine spatial model correlation. This 
value was chosen by visual inspection as a threshold where neurons with higher  
r values did often fit the templates reasonably well.

Fitting of von mises mixture models. To fit direction tuning data, we used von 
Mises distributions, a periodic generalization of the Gaussian distribution. For 
a von Mises distribution evaluated at angle x, centered at mean angle µ and with 
concentration κ, the probability density function fvm(x | µ,κ) is 

f x e
I

x

vm

cos
| ,m k

k

k m
( )=

( )

( )−

π2 0

where I0(κ) is the modified Bessel function of the first kind of order 0. The dis-
persion, 1/κ, is analogous to variance. If κ = 0, the distribution is uniform, and 
as κ increases, the distribution approaches the normal distribution with mean 
µ and variance 1/κ. Because our data potentially displayed multiple peaks, a 
mixture of von Mises distributions with multiple means and variances were fit 
and compared. The von Mises mixture model for orientation x is
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which is a weighted sum of multiple von Mises distributions of varying means and 
dispersions. We define πj as the weight of the jth model in the mixture model of 
order M. Bold denotes a vector of all of the values for the corresponding von Mises 
models. The order of the von Mises mixture model is the number of combined 
von Mises distributions. The 0th-order model is equivalent to a uniform circular 
distribution whose values, like those of the normalized rate data, sum to 1. Order 
1 to order 8 models employ one to eight von Mises distributions, respectively. 
Model orders up to 8 were included so that all reasonably feasible multimodal 
possibilities given the empirical width of tuning peaks were evaluated.

For each condition (arena, track standard and track rotated) and neuron,  
a directional tuning vector was calculated from a randomly selected half of the 
data as described in “Directional tuning vectors” above. Mean firing rates were 
converted to a proportional number of data samples in the mean direction for each 
bin. Then, separately for each order model from 1–8, we implemented the esti-
mation-maximization algorithm26 to find a model fit to the data. The estimation- 
maximization algorithm for a von Mises mixture model has already been applied 
and used in audio source research27. It can be described in four steps:

1) Initialize parameters for the each of the von Mises distributions in the 
model. We initialized the means by separating the means as far as possible on 
the circle, given the order of the model being used. So, for a fourth-order model, 
means were initially located 90° apart. Concentration values scaled linearly 
with the number of distributions. This was done to keep distribution overlap 
at initialization relatively similar across the model orders. Finally, the mixing 
parameter was always set to equal probabilities for all models. To account for 
the possibility that mean initialization orientations effected the outcome, we 
offset our equally spaced distributions at 10 equal offsets between the original 
model locations and ran the algorithm with each initialization. The model with 
the lowest log likelihood was the one used for further analysis.

2) Estimation step: evaluate the responsibility γ each von Mises distribution 
model has in the prediction of each of N data points 

g
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where γij is the responsibility of the jth von Mises distribution in the model for 
the ith data point, xi.

3) Maximization step: re-estimate the parameters µ, κ and π using the current 
responsibilities γ. Specifically, this is done by solving the following equations for 
each of the means 
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for each von Mises distribution in the model. Please note that κj is best solved 
by numerically inverting the defined function A(κj).

4) Check for convergence of the log likelihood of the data given the model. 
We quit when the log likelihood improved by less than 0.01%. If convergence is 
not reached, update the parameter values using the newly calculated parameters 
and repeat steps 2 and 3.

evaluation of von mises mixture model fit. For each neuron, each model was 
cross-validated by calculating the sum-squared-error (SSE) between model values 
and actual direction tuning values for the remaining half of the data. The ratio 
of SSE of each order mixture model to SSE of the circular (0th-order) model 
for that same neuron was used to determine overall goodness of fit. Taking into 
account the trade-off between model fit and model complexity, we defined the 
‘best’ model as the model yielding a 50% improvement in fit over the circular 
model and a 20% improvement over the next simplest model. Similar results 
were obtained using thresholds of 40–60% improvement over the circular model 
and 10–22.5% improvement over the next simplest model (Supplementary  
Figs. 5 and 6).

Spatial independence. The spatial independence criterion was used to identify 
neurons that were consistently active when the animal was facing a preferred 
orientation regardless of spatial location on the track. For all 2 cm × 2 cm spatial 
bin locations with at least 10 samples in a peak 10° bin orientation, the neuron 
was considered active if its mean rate at that position and orientation was at least 
50% of its overall mean rate for that orientation. If more than 50% of the viable 
locations for both peaks of a neuron were active, the neuron was considered to 
meet this criterion.

maxima and minima orientations and ratios. Peak orientations are the von 
Mises mixture model orientation parameters. Large and small peaks are deter-
mined by the mixture parameters of the model. Maxima and minima values for 
ratio calculations are determined by actual data values from the orientation bins 
containing the model maxima and minima. Peak-to-minimum ratios are the 
mean of the peak values divided by the mean of the minima values. Peak-to-peak 
ratios are simply the larger peak value divided by the smaller peak value.

correlation across track positions. Pearson correlations for the track rotation 
experiment were calculated between the directional tuning vectors of the track 
data in the normal orientation and directional tuning data from the 90°-rotated 
track session for each individual neuron. Pearson correlations were also calcu-
lated between the normal track orientation data and the 90°-rotated track data 
shifted 90°. A Wilcoxon rank sum test was run between the two populations for 
the axis-tuned subpopulation.

Alignment of peaks. Peak alignments for the track rotation experiment were 
calculated using the angle difference between the larger peak on the non-rotated 
track and the closest peak on the rotated track.

data and code availability. The data that support the findings of this study and 
code used for analysis are available from the corresponding author upon reason-
able request.
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